Precessing thermal/non-thermal jets from SS 433

S. Migliari, R. Fender (Amsterdam) K. Blundell (Oxford)

Line of Sight

East

Simultaneous radio/X-rays 11 July 2003

60 ks of Chandra ACIS-S

40 ks of VLA @ 5 GHz

Arcsec-scale X-ray structure

NOT a long-term and static structure

X-ray spatially resolved spectra

Vertical lines are @ 6.4 and 6.7 keV

Multiple X-ray lines with different energies East-West

High excitation lines (Fe XXV / XXVI ?)

This indicates HOT, MOVING plasma at large distances from the core (100s of days since launch)

SIMULTANEOUS RADIO/X-RAY IMAGES

X-ray and radio emitting regions are spatially close (if not coincident)

X-ray continuum is NOT consistent with being produced by synchrotron (c.f. XTE J1550-564)

- break in the synch. emission before soft X-ray band
- X-ray continuum is thermal

SIMULTANEOUS RADIO/X-RAY IMAGES: estimating the relative populations of a hybrid thermal/nonthermal plasma

- We can estimate the volume of the east-jet in the region analysed V~ f x 7x10e49 cm³ (f is the `filling factor')
- From the volume and X-ray fluxes (Fe and bremss. continuum) we can estimate in two ways the baryonic mass that emits thermally:
 - → M(br)~7x10e-5 Mo M(Fe)~2x10e-5 Mo

The corresponding kinetic power is Lkin~2x10e41 erg/s

- From the volume and radio flux, from 'minimum energy' arguments and assuming that the particle distribution extends to Lorentz factors ~1 and one proton for each electron, the baryonic mass that emits synchrotron is: M(synch)~ 10e-7 Mo

IF f~10e-6 we obtain a 'reasonable' value for a stellar mass obj. accreting at Eddington of Lkin~2x10e38 erg/s

IF we use the same filling factor for synch. population we obtain: Mx/Mr~50 THE MASS OF THE TAIL THAT PRODUCES SYNCH. IS ~1%

"RUFF"

(Equatorial emission)

- X-ray equatorial emission
- Iron lines: it seems to be a massive baryonic outflow of matter perpendicular to jets

Summary

- X-ray arcsec scale jets are NOT static and long term
- X-ray jets spectra: multiple Doppler-shifted Fe lines: hot (~keV) moving plasma at large distance from core
- Broadband radio/X-ray spectrum indicates hybrid thermal/non-thermal plasma with at most ~1% of total mass in non-thermal component
- "Ruff" seems to be a massive outflow perpendicular to the axis of the jets